Publication

Published or In press:

  1. Hyatt, H.W ., Zhang, Y., Hood, W.R. and Kavazis, A.N., 2019. Changes in Metabolism, Mitochondrial Function, and Oxidative Stress Between Female Rats Under Nonreproductive and 3 Reproductive Conditions. Reproductive Sciences, p.1933719118766264.

  2. Hyatt, H.W., Zhang, Y., Hood, W.R. and Kavazis, A.N., 2018. Physiological, mitochondrial, and oxidative stress differences in the presence or absence of lactation in rats. Reproductive Biology and Endocrinology, 16(1), p.2.

  3. Parry, H.A., Kephart, W.C., Mumford, P.W., Romero, M.A., Mobley, C.B., Zhang, Y., Roberts, M.D. and Kavazis, A.N., 2018. Ketogenic diet increases mitochondria volume in the liver and skeletal muscle without altering oxidative stress markers in rats. Heliyon, 4(11), p.e00975. 

  4. Hood, W.R., Zhang, Y., Mowry, A.V., Hyatt, H.W. and Kavazis, A.N., 2018. Life history trade-offs within the context of mitochondrial hormesis. Integrative and comparative biology, 58(3), pp.567-577.

  5. Finger, J.W., Hamilton, M.T., Kelley, M.D., Zhang, Y., Kavazis, A.N., Glenn, T.C. and Tuberville, T.D., 2018. Dietary Selenomethionine Administration and Its Effects on the American Alligator (Alligator mississippiensis): Oxidative Status and Corticosterone Levels. Archives of environmental contamination and toxicology, 75(1), pp.37-44.

  6. Zhang, Y., Yap, K.N., Williams, T.D. and Swanson, D.L., 2018. Experimental increases in foraging costs affect pectoralis muscle mass and myostatin expression in female, but not male, zebra finches (Taeniopygia guttata). Physiological and Biochemical Zoology, 91(3), pp.849-858.

  7. Koch, R.E., Kavazis, A.N., Hasselquist, D., Hood, W.R., Zhang, Y., Toomey, M.B. and Hill, G.E., 2018. No evidence that carotenoid pigments boost either immune or antioxidant defenses in a songbird. Nature communications, 9(1), p.491.

  8. Zhang, Y., Brasher, A.L., Park, N.R., Taylor, H.A., Kavazis, A.N. and Hood, W.R., 2018. High activity before breeding improves reproductive performance by enhancing mitochondrial function and biogenesis. Journal of Experimental Biology, pp.jeb-177469.

  9. Hyatt, H.W., Zhang, Y., Hood, W.R. and Kavazis, A.N., 2017. Lactation has persistent effects on a mother’s metabolism and mitochondrial function. Scientific reports, 7(1), p.17118.

  10. Finger, J.W., Botero, J., Zhang, Y., Still, S.E., Hoffman, A.J., Kavazis, A.N., Cristol, D.A. and Wada, H., 2017. No Effect of Lifelong Methylmercury Exposure on Oxidative Status in Zebra Finches (Taeniopygia guttata): A Demonstration of Methylmercury-Induced Selection?. Bulletin of environmental contamination and toxicology, 99(6), pp.668-672.

  11. Zhang, Y., Humes, F., Almond, G., Kavazis, A.N. and Hood, W.R., 2017. A mitohormetic response to pro-oxidant exposure in the house mouse. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology, 314(1), pp.R122-R134.

  12. Kephart, W.C., Mumford, P.W., Mao, X., Romero, M.A., Hyatt, H.W., Zhang, Y., Mobley, C.B., Quindry, J.C., Young, K.C., Beck, D.T. and Martin, J.S., 2017. The 1-week and 8-month effects of a ketogenic diet or ketone salt supplementation on multi-organ markers of oxidative stress and mitochondrial function in rats. Nutrients, 9(9), p.1019.

  13. Zhang, Y., Kallenberg, C., Hyatt, H.W., Kavazis, A.N. and Hood, W.R., 2017. Change in the lipid transport capacity of the liver and blood during reproduction in rats. Frontiers in physiology, 8, p.517.

  14. Zhang, Y., Eyster, K. and Swanson, D.L., 2017. Context-dependent regulation of pectoralis myostatin and lipid transporters by temperature and photoperiod in dark-eyed juncos. Current zoology, 64(1), pp.23-31.

  15. Swanson, D.L., King, M.O., Culver III, W. and Zhang, Y., 2017. Within-Winter flexibility in muscle masses, myostatin, and cellular aerobic metabolic intensity in passerine birds. Physiological and Biochemical Zoology, 90(2), pp.210-222.

  16. Zhang, Y. and Hood, W.R., 2016. Current versus future reproduction and longevity: a re-evaluation of predictions and mechanisms. Journal of Experimental Biology, 219(20), pp.3177-3189.

  17. Zhang, Y., Carter, T., Eyster, K. and Swanson, D.L., 2015. Acute cold and exercise training upregulate similar aspects of fatty acid transport and catabolism in house sparrows, Passer domesticus. Journal of Experimental Biology, pp.jeb-126128.

  18. Zhang, Y., King, M.O., Harmon, E., Eyster, K. and Swanson, D.L., 2015. Migration-induced variation of fatty acid transporters and cellular metabolic intensity in passerine birds. Journal of Comparative Physiology B, 185(7), pp.797-810.

  19. Zhang, Y., King, M.O., Harmon, E. and Swanson, D.L., 2015. Summer-to-winter phenotypic flexibility of fatty acid transport and catabolism in skeletal muscle and heart of small birds. Physiological and Biochemical Zoology, 88(5), pp.535-549.

  20. Zhang, Y., Eyster, K., Liu, J.S. and Swanson, D.L., 2015. Cross-training in birds: cold and exercise training produce similar changes in maximal metabolic output, muscle masses and myostatin expression in house sparrows, Passer domesticus. Journal of Experimental Biology, pp.jeb-121822.

  21. King, M.O., Zhang, Y., Carter, T., Johnson, J., Harmon, E. and Swanson, D.L., 2015. Phenotypic flexibility of skeletal muscle and heart masses and expression of myostatin and tolloid-like proteinases in migrating passerine birds. Journal of Comparative Physiology B, 185(3), pp.333-342.

  22. Zhang, Y., 2015. Patterns and mechanisms of phenotypic flexibility associated with flight exercise and shivering in small birds (Doctoral dissertation, University of South Dakota).

  23. Swanson, D., Zhang, Y. and King, M., 2014. Mechanistic drivers of flexibility in summit metabolic rates of small birds. PloS one, 9(7), p.e101577.

  24. Swanson, D., Zhang, Y., Liu, J.S., Merkord, C.L. and King, M.O., 2014. Relative roles of temperature and photoperiod as drivers of metabolic flexibility in dark-eyed juncos. Journal of Experimental Biology, 217(6), pp.866-875.

  25. Swanson, D.L., Zhang, Y. and King, M.O., 2013. Individual variation in thermogenic capacity is correlated with flight muscle size but not cellular metabolic capacity in American goldfinches (Spinus tristis). Physiological and Biochemical Zoology, 86(4), pp.421-431.